Grants
FWF project P 31264
Resonance modes of plasmonic nanoparticles
Project team
- Gerhard Unger (Principal investigator)
- Ulrich Hohenester (Co-investigator)
- Nikita Reichelt (PhD student)
Project summary
The concept of resonances and modes for the description of particle plasmons, these are coherent electron charge oscillations at the interface between a metallic nanoparticle and a dielectric environment, has recently received great interest in the field of plasmonics, both in the context of efficient simulations as well as for an intuitive interpretation in physical terms. In this project we plan to investigate resonance modes using a boundary element method approach and to compare different resonance concepts introduced in the literature, with main focus on the analysis and numerical approximations of plasmonic resonance problems in the framework of the analytic Fredholm theory. We will also seek for an efficient computation using a recently developed nonlinear eigenmode solver, and will apply our results to plasmon field tomography based on electron energy loss spectroscopy.
Publications
- U. Hohenester, N. Reichelt, G. Unger: Nanophotonic resonance modes with the nanobem toolbox. Comput. Phys. Commun., 276, 108337,(2022), arXiv
- U. Hohenester, G. Unger: Nanoscale electromagnetism with the boundary element method, Phys. Rev. B 105, 075428 (2022). arXiv
- G. Unger: Convergence analysis of a Galerkin boundary element method for electromagnetic resonance problems. Partial Differ. Equ. Appl. (2) 3 (2021), Paper No. 39, 29 pp.
- X. Li, G. Haberfehlner, U. Hohenester, O. Stéphan, G. Kothleitner, M. Kociak: Three-dimensional vectorial imaging of surface phonon polaritons. Science, 371,1364-1367, 2021.
- U. Hohenester, G. Unger, A. Trügler: Novel Modal Approximation Scheme for Plasmonic Transmission Problems. Phys. Rev. Lett. 121, 246802, 2018.
Software
Gerhard Unger
Institut für Physik