Ende dieses Seitenbereichs.

Beginn des Seitenbereichs: Inhalt:

Publikationen

  • Cresson, J., Sonner, S., A note on a derivation method for SDE models: applications in biology and viability criteria, Stoch. Anal. Appl., 36 (2018), 224-239.
  • Hiremath, S. A., Surulescu, C., Zhigun, A., Sonner, S., On a coupled SDE-PDE system modeling acid-mediated tumor invasion, Discrete Contin. Dyn. Syst. Ser. B, to appear (2018), doi: 10.3934/dcdsb.2018071.
  • Caraballo, T., Sonner, S., Random pullback exponential attractors: general existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst. 37 (2017), 6383-6403.
  • Emerenini, B. O., Sonner, S., Eberl, H. J., Mathematical analysis of a quorum-sensing induced biofilm dispersal model, Math. Biosci. Eng. 14 (2017), 625-653.
  • Cresson, J., Puig, B., Sonner, S., Stochastic models in biology and the invariance problem, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 2145-2168.
  • Kloeden, P. E., Sonner, S., Surulescu, C., A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 2233-2254.
  • Rahman, K. A., Sonner, S., Eberl, H. J., Derivation of a multi-species cross-diffusion model from a lattice differential equation and positivity of its solutions, Acta Physica Polonica B Proc. Suppl. (2016), 121-132.
  • Sonner, S., Surulescu, C., Kloeden, P. E., Stochastic micro-macro models for acid mediated tumor invasion, YRS 2016 Proc., Fraunhofer Verlag (2016), 137-142.
  • Kogoj, A. E., Sonner, S., Hardy inequalities for Δ_λ-Laplacians, Complex Var. Elliptic Equ. 61 (2016), 422-442.
  • Sonner, S., Efendiev, M. A., Eberl, H. J., On the well-posedness of mathematical models for multicomponent biofilms, Math. Methods Appl. Sci. 38 (2015), 3753-3775.
  • Sonner, S., Global attractors for semilinear parabolic problems involving X-elliptic operators, Bruno Pini Math. Anal. Semin., Univ. Bologna, Alma Mater Stud. (2015), 39-53.
  • Kogoj, A. E., Sonner, S., Attractors met X-elliptic operators, J. Math. Anal. Appl. 420 (2014), 407-434.
  • Carvalho, A. N., Sonner, S., Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal. 13 (2014), 1141-1165.
  • Sonner, S., A class of mathematical models describing processes in spatially heterogeneous biofilm communities, BIOMATH 2 (2013), 1312311, 10 p.
  • Kogoj, A. E., Sonner, S., Attractors for a class of semilinear degenerate parabolic equations, J. Evol. Equ. 13 (2013), 675-691.
  • Cresson, J., Puig, B., Sonner, S., Validating stochastic models: invariance criteria for systems of stochastic differential equations and the selection of a stochastic Hodgkin-Huxley type model, Internat. J. Biomath. Biostat. 2 (2013), 111-122.
  • Carvalho, A. N., Sonner, S., Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal. 12 (2013), 3047-3071.
  • Cresson, J., Efendiev, M. A., Sonner, S., On the positivity of solutions of stochastic PDEs, ZAMM Z. Angew. Math. Mech. 93 (2013), 414-422.
  • Sonner, S., Efendiev, M. A., Eberl, H. J., On the well-posedness of a mathematical model of quorum-sensing in patchy biofilm communities, Math. Methods Appl. Sci. 34 (2011), 1667-1684.
  • Efendiev, M. A., Sonner, S., On verifying mathematical models with diffusion, transport and interaction, GATUKO Internat. Ser. Math. Sci. Appl. 32 (2010), 41-67.
  • Efendiev, M. A., Lasser, R., Sonner, S., Necessary and sufficient conditions for an infinite system of parabolic equations preserving the positive cone, Internat. J. Biomath. Biostat. 1 (2010), 47-52.

Institut für Mathematik und Wissenschaftliches Rechnen
Heinrichstr. 36
8010 Graz, Austria

Ende dieses Seitenbereichs.

Beginn des Seitenbereichs: Zusatzinformationen:


Ende dieses Seitenbereichs.